Part Number Hot Search : 
BT5401 LNK500P MC34181 38NB50 00LVE BL8305A 03953 TSOP3856
Product Description
Full Text Search
 

To Download 80-M006PNB010SA-K615C Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  80-M006PNB010SA-K615C ; 80-m006pnb010sa01-k615d preliminary datasheet miniskiip 0 600v/10a solderless interconnection trench fieldstop igbt's for low saturation losses optional 2- and 3-leg rectifier industrial drives embedded drives 80-m006pnb010sa01-k615d, 2-leg rectifier 80-M006PNB010SA-K615C, 3-leg rectifier t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 25 t c =80c 25 t h =80c 38 t c =80c 58 maximum junction temperature t j max 150 c inverter transistor t h =80c 15 t c =80c 15 t h =80c 39 t c =80c 59 t sc t j 150c 6 s v cc v ge =15v 360 v 30 20 p tot gate-emitter peak voltage power dissipation per diode i 2 t w a 240 types i2t-value maximum ratings i fav a 2 s i fsm condition input rectifier diode 220 a features miniskiip0 housing target applications schematic dc forward current surge forward current t j =25c t j =t j max t p =10ms t j =t j max p tot repetitive peak collector current power dissipation per igbt maximum junction temperature short circuit ratings turn off safe operating area collector-emitter break down voltage dc collector current t j =t j max t j =t j max vce 1200v, tj top max t p limited by t j max a 600 a v 30 v ce i c v ge i cpulse t j max w a v c 175 copyright vincotech 1 revision: 1
80-M006PNB010SA-K615C ; 80-m006pnb010sa01-k615d preliminary datasheet t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter diode t h =80c 15 t c =80c 15 t h =80c t c =80c t h =80c 33 t c =80c 49 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm 30 clearance insulation voltage creepage distance t op operation temperature under switching condition -40?+(tjmax - 25) c storage temperature t stg -40?+125 c t j =t j max t p limited by t j max dc forward current t j =t j max a i f v rrm t j =25c a w 175 c maximum junction temperature peak repetitive reverse voltage repetitive peak forward current power dissipation per diode v t j max i frm p tot 600 copyright vincotech 2 revision: 1
80-M006PNB010SA-K615C ; 80-m006pnb010sa01-k615d preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max t j =25c 1,43 1,64 t j =125c 1,44 t j =25c 0,92 t j =125c 0,79 t j =25c 20,29 t j =125c 26,11 t j =25c 0,05 t j =125c thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,83 k/w t j =25c 5 5,8 6,5 t j =150c t j =25c 1,19 1,64 1,99 t j =150c 1,89 t j =25c 0,0006 t j =150c t j =25c 300 t j =150c t j =25c 90 t j =150c 91 t j =25c 22 t j =150c 25 t j =25c 133 t j =150c 156 t j =25c 120 t j =150c 144 t j =25c 0,26 t j =150c 0,38 t j =25c 0,26 t j =150c 0,34 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,46 k/w t j =25c 1,39 t j =150c 1,32 t j =25c 6,77 t j =150c 9,87 t j =25c 233 t j =150c 352 t j =25c 0,66 t j =150c 1,46 di ( rec ) max t j =25c 105 /d t t j =150c 109 t j =25c 0,13 t j =150c 0,30 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,92 k/w r25=1000 ? tr=25c -3 3 r100=1670 ? tr=100c -2 2 tj=25c tj=25c ? 55 mws ns pf ns a nc na v ma v tr=25c tr=25c mws rgon=64 ? thermistor 1600 r/r rated resistance r temperature coefficient deviation of r % /k r100 r 100 ? 300 300 0,00015 10 25 0 10 v ce =v ge 600 reverse recovery time turn-off delay time turn-on delay time rise time gate-emitter leakage current reverse recovered energy peak rate of fall of recovery current turn-on energy loss per pulse reverse recovered charge inverter diode peak reverse recovery current reverse transfer capacitance diode forward voltage gate charge c ies 15 10 15 rgon=64 ? 0 20 15 rgoff=64 ? f=1mhz a/ s c reverse current i r v v m ? ma 25 25 25 characteristic values forward voltage threshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode value conditions output capacitance turn-off energy loss per pulse integrated gate resistor inverter transistor gate emitter threshold voltage collector-emitter saturation voltage collector-emitter cut-off current incl. diode fall time r gint input capacitance t f e on e off t d(on) c oss t r t d(off) c rss q rr t rr i rrm v f erec q gate 0 i ges v ge(th) v ce(sat) i ces 0,76 1670 % ? 1000 10 15 v 62 551 17 40 a-value b (25/50) tol. % 1/k b (25/100) tr=25c 1,731*10-5 1/k2 b-value tol. % vincotech ntc reference e 7,635*10-3 tr=25c copyright vincotech 3 revision: 1
80-M006PNB010SA-K615C ; 80-m006pnb010sa01-k615d preliminary datasheet figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 output inverter igbt figure 4 output inverter fwd typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) t p = 250 s t p = 250 s v ce = 10 v output inverter typical output characteristics 0 5 10 15 20 25 30 012345 v ce (v) i c (a) 0 2 4 6 8 10 024681012 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 35 0,0 0,5 1,0 1,5 2,0 2,5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 012345 v ce (v) i c (a) copyright vincotech 4 revision: 1
80-M006PNB010SA-K615C ; 80-m006pnb010sa01-k615d preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) inductive load inductive load t j = 25/150 c t j = 25/150 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 10 a r goff = 32 ? figure 7 output inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) inductive load inductive load t j = 25/150 c t j = 25/150 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 10 a output inverter e on high t e off high t e on low t e off low t 0,0 0,2 0,4 0,6 0,8 1,0 0 5 10 15 20 i c (a) e (mws) e off high t e on high t e on low t e off low t 0,0 0,2 0,4 0,6 0,8 1,0 0 32 64 96 128 160 r g ( ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0 5 10 15 20 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,0 0,1 0,2 0,3 0,4 0 32 64 96 128 160 r g ( ) e (mws) copyright vincotech 5 revision: 1
80-M006PNB010SA-K615C ; 80-m006pnb010sa01-k615d preliminary datasheet figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) inductive load inductive load t j = 150 c t j = 150 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 10 a r goff = 32 ? figure 11 output inverter fwd figure 12 output inverter fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) t j = 25/150 c t j = 25/150 c v ce = 300 v v r = 300 v v ge = 15 v i f = 10 a r gon = 32 ? v ge = 15 v output inverter t doff t f t don t r 0,00 0,01 0,10 1,00 02468101214161820 i c (a) t ( s) t j = t jmax -25c t rr t j = 25c t rr 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0 32 64 96 128 160 r gon ( ) t rr ( s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 32 64 96 128 160 r g ( ) t ( s) t j = t jmax -25c t rr t rr t j = 25c 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0 2 4 6 8 10 12 14 16 18 20 i c (a) t rr ( s) copyright vincotech 6 revision: 1
80-M006PNB010SA-K615C ; 80-m006pnb010sa01-k615d preliminary datasheet figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c )q rr = f(r gon ) at t j = 25/150 c t j = 25/150 c v ce = 300 v v r = 300 v v ge = 15 v i f = 10 a r gon = 32 ? v ge = 15 v figure 15 output inverter fwd figure 16 output inverter fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) t j = 25/150 c t j = 25/150 c v ce = 300 v v r = 300 v v ge = 15 v i f = 10 a r gon = 32 ? v ge = 15 v output inverter t j = t jmax - 25c i rrm t j = 25c i rrm 0 5 10 15 20 25 0 32 64 96 128 160 r gon ( ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0,0 0,4 0,8 1,2 1,6 2,0 0 32 64 96 128 160 r gon ( ) q rr ( c) t j = t jmax -25c i rrm t j = 25c i rrm 0 2 4 6 8 10 12 0 2 4 6 8 101214161820 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0,0 0,5 1,0 1,5 2,0 2,5 0 2 4 6 8 10 12 14 16 18 20 i c (a) q rr ( c) copyright vincotech 7 revision: 1
80-M006PNB010SA-K615C ; 80-m006pnb010sa01-k615d preliminary datasheet figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c )d i 0 /dt,di rec /dt = f(r gon ) t j = 25/150 c t j = 25/150 c v ce = 300 v v r = 300 v v ge = 15 v i f = 10 a r gon = 32 ? v ge = 15 v figure 19 output inverter igbt figure 20 output inverter fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) d = t p / t d = t p / t r thjh = 2,46 k/w 1,99 r thjh = 2,92 k/w 2,37 igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,13 1,9e+00 0,11 1,5e+00 0,14 1,8e+00 0,11 1,5e+00 0,80 1,6e-01 0,65 1,3e-01 0,70 1,8e-01 0,57 1,4e-01 0,76 3,0e-02 0,61 2,5e-02 1,13 4,6e-02 0,92 3,7e-02 0,45 4,5e-03 0,37 3,6e-03 0,48 9,5e-03 0,39 7,7e-03 0,32 4,0e-04 0,26 3,3e-04 0,40 1,2e-03 0,32 9,8e-04 0,07 2,9e-04 0,06 2,4e-04 thermal grease phase change interface thermal grease phase change interface output inverter t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t j = t jmax - 25c di 0 /dt di rec /dt high t di rec /dt t j = 25c 0 500 1000 1500 2000 2500 0 32 64 96 128 160 r gon ( ) di rec / dt (a/ s) di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 100 200 300 400 500 600 0 2 4 6 8 10 12 14 16 18 20 i c (a) di rec / dt (a/ s) di rec /dt di 0 /dt copyright vincotech 8 revision: 1
80-M006PNB010SA-K615C ; 80-m006pnb010sa01-k615d preliminary datasheet figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) t j = 175 c t j = 175 c v ge = 15 v figure 23 output inverter fwd figure 24 output inverter fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) t j = 175 c t j = 175 c output inverter 0 20 40 60 80 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 0 50 100 150 200 t h ( o c) i c (a) 0 15 30 45 60 75 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 9 revision: 1
80-M006PNB010SA-K615C ; 80-m006pnb010sa01-k615d preliminary datasheet figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function gate voltage vs gate charge of collector-emitter voltage i c = f(v ce )v ge = f(q ge ) d = single pulse i c = 10 a t h = 80 oc v ge = 15 v t j =t jmax oc figure 27 output inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical short circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge )i sc = f(v ge ) v ce = 600 v v ce 600 v t j 175 oc t j = 175 oc output inverter v ce (v) i c (a) 10 2 10 -1 10 -2 10 0 10 1 10 1 10 2 10us 100us 1ms 10ms 100ms dc 10 0 10 3 0 2,5 5 7,5 10 12,5 15 17,5 0 1020304050607080 q g (nc) v ge (v) 120 v 480 v 0 2,5 5 7,5 10 12,5 15 17,5 12 13 14 15 16 17 18 19 20 v ge (v) t sc ( s) 0 25 50 75 100 125 150 175 200 225 250 12 13 14 15 16 17 18 19 20 v ge (v) i c(sc) copyright vincotech 10 revision: 1
80-M006PNB010SA-K615C ; 80-m006pnb010sa01-k615d preliminary datasheet figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) t p = 250 sd = t p / t r thjh = 1,834 k/w figure 3 rectifier diode figure 4 rectifier diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) t j = 150 oc t j = 150 oc input rectifier bridge 0 15 30 45 60 75 0,0 0,5 1,0 1,5 2,0 2,5 3,0 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 15 30 45 60 75 90 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 11 revision: 1
80-M006PNB010SA-K615C ; 80-m006pnb010sa01-k615d preliminary datasheet figure 1 thermistor thermistor typical ptc characteristic equation of ptc resistance temperature dependency as a function of temperature r t = f(t) r ( t ) = 1000 [ 1+ a* ( t-25c ) +b* ( t-25c ) 2 ] [ ] thermistor ptc-typical temperature characteristic 0 500 1000 1500 2000 2500 3000 25 45 65 85 105 125 t (c) r/ ? copyright vincotech 12 revision: 1
80-M006PNB010SA-K615C ; 80-m006pnb010sa01-k615d preliminary datasheet t j 150 c r g on 32 ? r goff 32 ? figure 1 output inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t dof f , t eof f turn-on switching waveforms & definition of tdon, t eon (t eof f = integrating time for e of f )( t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 300 v v c (100%) = 300 v i c (100%) = 10 a i c (100%) = 10 a t doff = 0,15 s t don = 0,09 s t eoff = 0,49 s t eon = 0,24 s figure 3 output inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 300 v v c (100%) = 300 v i c (100%) = 10 a i c (100%) = 10 a t f = 0,13 s t r = 0,02 s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -20 0 20 40 60 80 100 120 140 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -50 0 50 100 150 200 250 2,8 2,9 3 3,1 3,2 3,3 3,4 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 140 -0,05 0 0,05 0,1 0,15 0,2 0,25 0,3 time (us) % v ce i c t f i c10% i c 90% -50 0 50 100 150 200 250 2,95 3 3,05 3,1 3,15 3,2 3,25 time(us) % tr v ce ic copyright vincotech 13 revision: 1
80-M006PNB010SA-K615C ; 80-m006pnb010sa01-k615d preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eof f turn-on switching waveforms & definition of t eon p off (100%) = 3,01 kw p on (100%) = 3,01 kw e off (100%) = 0,32 mj e on (100%) = 0,36 mj t eoff = 0,49 s t eon = 0,24 s figure 7 output inverter fwd figure 8 output inverter igbt gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t r r v geoff = -15 v v d (100%) = 300 v v geon = 15 v i d (100%) = 10 a v c (100%) = 300 v i rrm (100%) = -10 a i c (100%) = 10 a t rr = 0,34 s q g = 1073,31 nc switching definitions output inverter i c 1% v ge 90% -20 0 20 40 60 80 100 120 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 time (us) % p of f e off t eoff v ce 3% v ge 10% -30 0 30 60 90 120 150 180 2,9 3 3,1 3,2 3,3 3,4 time(us) % p on e on t eon -20 -15 -10 -5 0 5 10 15 20 -50 0 50 100 150 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% trr -120 -80 -40 0 40 80 120 2,95 3,1 3,25 3,4 3,55 3,7 time(us) % i d v d fitted copyright vincotech 14 revision: 1
80-M006PNB010SA-K615C ; 80-m006pnb010sa01-k615d preliminary datasheet figure 9 output inverter fwd figure 10 output inverter fwd turn-on switching waveforms & definition of t qr r turn-on switching waveforms & definition of t erec (t qrr = integrating time for q r r )( t erec = integrating time for e rec ) i d (100%) = 10 a p rec (100%) = 3,01 kw q rr (100%) = 1,50 c e rec (100%) = 0,32 mj t qrr = 1,00 s t erec = 1,00 s switching definitions output inverter t qrr -150 -100 -50 0 50 100 150 2,9 3,1 3,3 3,5 3,7 3,9 4,1 4,3 % i d q r r time(us) -20 0 20 40 60 80 100 120 2,9 3,1 3,3 3,5 3,7 3,9 4,1 4,3 time(us) % p rec e rec te rec copyright vincotech 15 revision: 1
80-M006PNB010SA-K615C ; 80-m006pnb010sa01-k615d preliminary datasheet version ordering code in datamatrix as in packaging barcode as 2-leg rectifier 80-m006pnb010sa01-k615d k615d k615d 3-leg rectifier 80-M006PNB010SA-K615C k615c k615c for k61x-dxx types for k61x-cxx types outline pinout ordering code & marking ordering code and marking - outline - pinout copyright vincotech 16 revision: 1
80-M006PNB010SA-K615C ; 80-m006pnb010sa01-k615d preliminary datasheet product status definitions formative or in design first production full production disclaimer life support policy as used herein: preliminary this datasheet contains preliminary data, and supplementary data may be published at a later date. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. final this datasheet contains final specifications. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for te chnically tr ained st aff. target product status datasheet status definition this datasheet contains the design specifications for product development. specific ations may change in any manner without notice. the dat a contained is exclusively intended for technica lly trai ned staff. the information given in this datasheet describes the type of component and does not represent assured characteristics. for tes ted values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to i mprove reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product o r circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express wri tten approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 17 revision: 1


▲Up To Search▲   

 
Price & Availability of 80-M006PNB010SA-K615C

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X